
HEAT CONDUCTION AND HEAT EXCHANGE IN TECHNOLOGICAL PROCESSES

MATHEMATICAL MODELING OF THE PROCESS
OF WARMING UP OF A CYLINDRICAL SURFACE
BY A MOVING INTENSE HEAT SOURCE

O. Yu. Chigireva UDC 536.02

A mathematical model of the process of warming up of a metal cylindrical surface by a moving point heat
source has been proposed; the model allows for the presence of a thin absorbing coating on the metal sur-
face and for the thermal resistance of the contact surface. An algorithm of calculation of a nonstationary tem-
perature field has been constructed.; this algorithm makes it possible to find the values of the problem’s
parameters ensuring local surface heating. An example of numerical calculation has been given.

One widespread form of laser processing of metals is laser surface hardening involving the action of an in-
tense laser-radiation flux on a local portion of the surface. A rapid heating of this portion to high temperatures results,
after which the heated portion of the surface is cooled by heat conduction deep into the material and by heat transfer
from the surface, once the action of the radiation has ceased. Information on the thermal state of the metal in the laser
processing is a source for analysis of the dimensions of the heat-affected zone and the properties of the surface hard-
ened [1].

We consider the process of warming up of a hollow cylinder by a point source following a spiral path on the
exterior cylinder surface with a high velocity. Considering the angle of the spiral line as being fairly small, we may
assume that the heat source moves in a circle lying in a plane which is perpendicular to the generatrix of the cylinder.
In such a model, the process of distribution of heat in the hollow cylinder may be considered for the case of its heat-
ing from a lumped ring source with a heat-flux density of q∗δ(z − z∗(t)), where q∗ = const, moving on the exterior lat-
eral surface. In the process of heating of the cylinder by such a heat source, we have heat transfer from the interior
and exterior cylindrical surfaces to the environment by the Newton law and heat exchange by radiation on the exterior
lateral surface.

Thus, determination of the temperature field in the hollow cylinder with a moving local ring heat source con-
tributes to the solution of the initial boundary-value problem for the heat-conduction equation. This problem assumes
a more general character if the presence of a thin absorbing coating on the metal surface [2] and the thermal resistance
of the contact surface between the metal and the absorbing coating are allowed for. Furthermore, allowance for the de-
pendence of thermophysical parameters on temperature requires that the formulation of the problem be nonlinear. As a
result we arrive at the following mathematical model of the process in question:
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on the exterior coating surface r = r2, the condition of heat exchange will take the form
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on the interior surface of the hollow metal cylinder r = r0, the condition of heat exchange will be written as

λ1 (T1) 
∂T1
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r=r0

 = α1 (T1 (r0, z, t) − Tenv) ,   t > 0 ,   0 ≤ z ≤ h ; (3)

the end surfaces z = 0 and z = h of the hollow metal cylinder and the cylindrical shell of the coating are set heat-in-
sulated:
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 = 0 ,   t > 0 ,   rj−1 ≤ r ≤ rj ,   j = 1, 2 ; (4)

the condition on the contact surface r = r1 is the condition of nonideal thermal contact
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 ,   t ≥ 0 ,   0 ≤ z ≤ h ; (5)

the metal and coating temperature at the initial instant of time will be taken to be constant and equal to the environ-
mental temperature:

Tj (r, z, 0) = Tenv ,   rj−1 ≤ r ≤ rj ,   0 ≤ z ≤ h . (6)

The mathematical model (1)–(6) is easily generalized to the case where the ring heat source executes periodic
reciprocating motion (scanning) with a constant velocity V∗ along the cylinder axis, and the law of motion z∗(t) may
be prescribed in the following manner:

z∗ (t) = 




l + V∗ (t − ti−1) ,     i = 1, 3, 5, ... ;

h − l − V∗ (t − ti−1) ,     i = 2, 4, 6, ... ;
     ti−1 ≤ t ≤ ti , (7)

where ti = it∗, t∗ = (h − 2l)/V∗, and l < h/2.
The present work seeks to determine the problem’s parameters q∗ and V∗ for which a limiting temperature

Tlim no higher than the melting temperature of the metal is attained in the surface layer of the hollow metal cylinder.
Below, we propose a modification of the method [3, 4]  for finding the approximate analytical solution of problem
(1)–(6).

We introduce the functions

Cj (Tj, r) = ρjrcj (Tj) ,   Λj (Tj, r) = rλj (Tj) ,   j =1, 2 ;

into consideration; then Eqs. (1) will take the form
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 ,   t > 0 ,   rj−1 < r < rj ,   0 < z < h ,   j = 1, 2 , (8)

the variables r and z here should be interpreted as orthogonal coordinates.
We discretize the time variable t by the system of points tk = kτ, k = 1, 2, ..., with a fairly small step

τ > 0 and replace the time derivatives in Eqs. (8) by the finite-difference relations
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where Tj
 (k)(r, z) are the approximate values of the functions Tj(r, z, t) at t = tk.
Next we linearize Eqs. (8), setting the coefficients Cj and Λj on each time layer t = tk the known functions

computed on the previous time layer t = tk−1. We introduce the notation
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Furthermore, on each time layer t = tk, we will also assume the heat fluxes in conjugation condition (5) to be known

and equal to 
1
R
(T2
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(k − 1)         (r1, z)). This makes it possible to write the differential-difference analog of prob-

lem (1)–(6) in the form of the following iteration scheme (k = 1, 2, ...) of solution of two boundary-value problems
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We note that in Q2
(k)(z), we have allowed for the approximation of the radiation condition
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At the first iteration step, the functions Tj
 (0)(r, z) should be considered as being equal to the initial tempera-

ture Tenv from conditions (6). At the kth iteration step, the functions Tj
 (k)(r, z) will be sought in the form of expansion

in double trigonometric Fourier series

Tj
 (k)

 (r, z) = ∑ 

m=0

∞

  ∑ 

n=0

∞

 γmnaj,mn
(k)

Xj,mn (r, z) ,   j = 1, 2 ;   γmn = γm γn ,   γm = 




0.5 ,
1 ,

     
m = 0 ,
m > 0 ,

(13)

in total and orthogonal systems of eigenfunctions
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of the following Sturm–Liouville problems:
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To find the Fourier coefficients aj,mn
(k) , j = 1, 2, in expansions (13) we multiply Eq. (9) and (11) by the func-

tions X1,ps(r, z) and X2,ps(r, z) respectively and thereafter integrate the resulting equalities over the domains Ω1 and
Ω2. Carrying out transformations with account for boundary conditions (10) and (12), we arrive at an infinite system
of linear algebraic equations for the sought Fourier coefficients aj,mn
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(k)  are the Fourier coefficients of the expansions of the functions Λj
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We transform systems (14) to their standard form. For this purpose we number the elements of two-dimen-
sional arrays aj,,mn

(k)  and bj,ps
 (k) by diagonals with equal sum of indices, establishing the correspondences (p, s) ↔ v and

(m, n) ↔ w by the rules

v = 
1
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1
2

 (m + n + 1) (m + n + 2) − n ,

according to which we compose one-dimensional sequences βw, dj,w
 (k), and gj,v

(k)  from the elements of two-dimensional
arrays γmn, aj,mn

(k) , and bj,ps
 (k). Using the same rules, we compose two-dimensional arrays Dj,vw

(k) , j = 1 and 2, from the
elements of multidimensional arrays Aj,psmn

(k) . As a result systems (14) will take the form
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 ,   v = 1, 2, ... ,   j = 1, 2 . (15)

It is noteworthy that, since the differential operator on the right-hand side of Eq. (8) is self-adjoint and posi-
tive definite, the matrices Dj

(k), j = 1 and 2, of systems (15) are symmetric and positive definite. In this case the so-
lution of these infinite systems may be found by the reduction method [5], i.e., by solution of systems of finite order
which are obtained from these infinite systems by truncation. In calculating, we determined the order of truncation of
systems (15) on the basis of the Runge estimate [6].

TABLE 1. Thermophysical Parameters of the Materials of the Hollow Cylinder and the Absorbing Coating

Parameters
T, K

300 400 600 800 1000 1200 1400 1600 1800 2000
λ1, W/(m⋅K) 48 47 41 37 32 23 21 20 — —

c1, J/(kg⋅K) 469 505 521 660 616 577 560 545 — —

λ2, W/(m⋅K) 32.0 28.0 20.0 16.0 7.5 6.4 5.6 5.7 5.8 6.9

c2, J/(kg⋅K) 860 875 943 1020 1086 1102 1140 1160 1170 1178

Fig. 1. Temperature distribution on the exterior surface r = r1 of the hollow
metal cylinder at the instants of time: 1) t = 40, 2) 50, 3) 60 sec. T1, K; z, m.
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As has been noted above, the present work seeks to determine such values of the problem’s parameters q∗
and V∗, for which we have

  max
0≤z≤h

  T1 (r1, z, t) ≤ Tlim ,   8t 8 [0, t
~
] ,

where t
~
 is a fixed value of time.
It is clear that the solution of this problem is not unique, i.e., there is a multitude of pairs of q∗ and V∗ val-

ues satisfying this condition. We give one solution, carrying out calculations for the following values of the parame-
ters: ρ1 = 7780 kg/m3, ρ2 = 3000 kg/m3, Tenv = 300 K, Tlim = 1600 K, α1 = 104 W/(m2⋅K), α2 = 50 W/(m2⋅K), R
= 10−4 m2⋅K/W, σ = 5.67⋅10−8 W/(m2⋅K4), ε = 0.8, r0 = 16⋅10−3 m, r1 = 36 ⋅10−3 m, r2 = 36.05⋅10−3 m, h =
120⋅10−3 m, l = 15⋅10−3 m, and t

~
 = 3t∗.

The values of the thermal conductivities and specific heats of the materials of the hollow cylinder and the ab-
sorbing coating as functions of the temperature are indicated in Table 1 [7].

Fig. 2. Temperature on the metal surface r = r1 vs. time for different values of
z: 1) z = z1; b) z = z2; c) z = z3. I–III, scanning steps. T1, K; t, sec.

Fig. 3. Field of isotherms in the axial cross section of the cylinder at the third
scanning step (z∗ = 0.105 m). T1, K; r, z, m.
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Varying the parameters q∗ and V∗ of the problem within the ranges q∗ = 106–107 W/(m⋅K) and V∗ = (4–
5)10−3 m/sec, we select values of q∗ = 8⋅106 W/(m⋅K) and V∗ = 4.5⋅10−3 m/sec for which the maximum temperature
in the surface layer of the hollow metal cylinder is no higher than the value of the limiting temperature Tlim:

  max
0≤z≤h

  T1 (r1, z, t) ≤ Tlim = 1600 K ,   8t 8 [0, t
~
] ,   t

~
 = 60 sec .

Figure 1 gives results of calculations of the temperature on the exterior surface r = r1 of the hollow metal
cylinder at fixed instants of time at the third scanning step. Figure 2 shows the evolution of the temperature on the
metal surface r = r1 for different values of z: z1 = 35⋅10−3 m, z2 = 60⋅10−3 m, and z3 = 85⋅10−3 m. Figure 3 gives
the field of isotherms in the axial cross section of the hollow cylinder at the third scanning step, when the heat source
is at the point z∗ = 0.105 m. As the results of calculations of the isotherm fields at different instants of time have
shown, the depth of local heating of the hollow metal cylinder to a temperature of 1200–1600 K is no larger than
2⋅10−3 m.

The rapid heating of a surface portion to high temperatures close to the value of the limiting temperature
Tlim followed by its rapid cooling as a result of the heat transfer from the surface and heat conduction deep into the
material makes it difficult to directly investigate such a process experimentally. Therefore, a numerical experiment is a
necessity for investigating the thermal state of the metal and finding the problem’s parameters that ensure local high-
temperature surface heating. The proposed mathematical model of the nonstationary process of heat conduction in a
two-layer hollow cylinder includes the nonlinear boundary condition and allows for the temperature dependence of the
thermophysical parameters of the layer and for the presence of the thermal resistance of the contact surface between
the metal and the absorbing coating. The constructed algorithm of calculation of the temperature field makes it possi-
ble to solve the problem under different heat-exchange conditions and for an arbitrary law of motion of the heat
source.

NOTATION

c, specific heat, J/(kg⋅K); h, cylinder height, m; l, coordinate z of the ring heat source at the initial instant of
time, m; R, thermal resistance, m2⋅K/W; r, spatial coordinate along the cylinder radius, m; T, temperature, K; t, time,
sec; t∗, time of one scanning step, sec; z, coordinate along the cylinder axis, m; z∗(t), coordinates of the ring source
along the cylinder axis; α, coefficient of convective heat transfer, W/(m2⋅K); δ(z), delta function; ε, emissivity factor
of the radiating surface; Θ, parameter of the Sturm–Liouville problem; λ, thermal conductivity, W/(m⋅K); ρ, density,
kg/m3; σ, Stefan–Boltzmann constant, W/(m2⋅K4); τ, time step, sec. Subscripts and superscripts: 1, hollow cylinder; 2,
absorbing coating; *, heat source; env, environment; i, scanning-step No.; k, iteration No.; lim, limiting.
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